Physiological and Molecular Responses to Variation of Light Intensity in Rubber Tree (Hevea brasiliensis Muell. Arg.)
نویسنده
چکیده
Light is one of most important factors to plants because it is necessary for photosynthesis. In this study, physiological and gene expression analyses under different light intensities were performed in the seedlings of rubber tree (Hevea brasiliensis) clone GT1. When light intensity increased from 20 to 1000 µmol m(-2) s(-1), there was no effect on the maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), indicating that high light intensity did not damage the structure and function of PSII reaction center. However, the effective photochemical quantum yield of PSII (Y(II)), photochemical quenching coefficient (qP), electron transfer rate (ETR), and coefficient of photochemical fluorescence quenching assuming interconnected PSII antennae (qL) were increased significantly as the light intensity increased, reached a maximum at 200 µmol m(-2) s(-1), but decreased from 400 µmol m(-2) s(-1). These results suggested that the PSII photochemistry showed an optimum performance at 200 µmol m(-2) s(-1) light intensity. The chlorophyll content was increased along with the increase of light intensity when it was no more than 400 µmol m(-2) s(-1). Since increasing light intensity caused significant increase in H2O2 content and decreases in the per unit activity of antioxidant enzymes SOD and POD, but the malondialdehyde (MDA) content was preserved at a low level even under high light intensity of 1000 µmol m(-2) s(-1), suggesting that high light irradiation did not induce membrane lipid peroxidation in rubber tree. Moreover, expressions of antioxidant-related genes were significantly up-regulated with the increase of light intensity. They reached the maximum expression at 400 µmol m(-2) s(-1), but decreased at 1000 µmol m(-2) s(-1). In conclusion, rubber tree could endure strong light irradiation via a specific mechanism. Adaptation to high light intensity is a complex process by regulating antioxidant enzymes activities, chloroplast formation, and related genes expressions in rubber tree.
منابع مشابه
Clonal stability of tree dryness in Hevea brasiliensis Muell. Arg
Clonal stability of tree dryness was evaluated in eleven clones of Hevea brasiliensis at the Rubber Research Institute of Nigeria. The experimental design was the randomized complete block with three replicates and ten trees per replicate. The clones were evaluated in three locations. Four stability parameters were applied. The stability parameters were: environmental variance, regression index...
متن کاملThe rubber tree genome shows expansion of gene family associated with rubber biosynthesis
Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persis...
متن کاملThe plant defense and pathogen counterdefense mediated by Hevea brasiliensis serine protease HbSPA and Phytophthora palmivora extracellular protease inhibitor PpEPI10
Rubber tree (Hevea brasiliensis Muell. Arg) is an important economic crop in Thailand. Leaf fall and black stripe diseases caused by the aggressive oomycete pathogen Phytophthora palmivora, cause deleterious damage on rubber tree growth leading to decrease of latex production. To gain insights into the molecular function of H. brasiliensis subtilisin-like serine proteases, the HbSPA, HbSPB, and...
متن کاملClonal and Planting Density Effects on Some Properties of Rubber Wood (hevea Brasiliensis Muell. Arg.)
Inter-clonal and intra-clonal wood properties and their variations from pith to bark were evaluated for wood density and anatomical features on rubber wood (Hevea brasiliensis Muell. Arg) from a 9-year-old plantation with planting densities of 500 and 2000 trees per hectare comprised of clones RRIM 2020 and RRIM 2025. Planting density had uneven effects on wood density and wood cell features. I...
متن کاملRegulation of HbPIP2;3, a Latex-Abundant Water Transporter, Is Associated with Latex Dilution and Yield in the Rubber Tree (Hevea brasiliensis Muell. Arg.)
Rubber tree (Hevea brasiliensis) latex, the source of natural rubber, is synthesised in the cytoplasm of laticifers. Efficient water inflow into laticifers is crucial for latex flow and production since it is the determinant of the total solid content of latex and its fluidity after tapping. As the mature laticifer vessel rings are devoid of plasmodesmata, water exchange between laticifers and ...
متن کامل